segunda-feira, 10 de fevereiro de 2014

Equação do 2º Grau - 9º ano / 8ª série









                                    Equação do 2º Grau


Denomina-se equação do 2° grau, qualquer sentença matemática que possa ser reduzida à forma ax2 + bx + c = 0, onde x é a incógnita e ab e c são números reais, com a ≠ 0ab e c são coeficientes da equação. Observe que o maior índice da incógnita na equação é igual a dois e é isto que a define como sendo uma equação do segundo grau.

Equação do 2° grau completa e equação do 2° grau incompleta

Da definição acima temos obrigatoriamente que a ≠ 0, no entanto podemos ter b = 0 e/ou c = 0.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2° grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2° grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2° grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2° grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero.

Resolução de equações do 2° grau

A resolução de uma equação do segundo grau consiste em obtermos os possíveis valores reais para a incógnita, que torne a sentença matemática uma equação verdadeira. Tais valores são a raiz da equação.

Fórmula Geral de Resolução

Para a resolução de uma equação do segundo grau completa ou incompleta, podemos recorrer à fórmula geral de resolução:
Esta fórmula também é conhecida como fórmula de Bhaskara.
O valor b2 -4ac é conhecido como discriminante da equação e é representado pela letra grega Δ. Temos então que Δ = b2 -4ac, o que nos permitir escrever a fórmula geral de resolução como:

3 comentários: